Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.474
Filtrar
1.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
2.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575956

RESUMO

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Assuntos
Adipocinas , Progesterona , Feminino , Animais , Coelhos , Progesterona/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacologia , Adipocinas/metabolismo , Adipocinas/farmacologia , Ovário/metabolismo , Células da Granulosa/metabolismo , Estradiol/metabolismo , Apoptose , Células Cultivadas , Proliferação de Células
3.
Front Endocrinol (Lausanne) ; 15: 1336543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516409

RESUMO

The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.


Assuntos
Osteoporose , Serpinas , Animais , Camundongos , Adipocinas/metabolismo , Apelina/metabolismo , Lipocalina-2 , Adiponectina/metabolismo , Osteoporose/tratamento farmacológico
4.
Anticancer Res ; 44(4): 1369-1376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537999

RESUMO

BACKGROUND/AIM: Obesity is correlated with an increased risk of developing malignancies, including prostate cancer. Adipocytokines, such as leptin and adiponectin, are a family of hormones derived from adipose tissue that are involved not only in metabolism, but also in the development and progression of various malignancies. However, little is known about their role in prostate cancer. This study aimed to determine how leptin, adiponectin, and their receptors impact the spread of prostate cancer. MATERIALS AND METHODS: We first performed immunohistochemical analysis of prostate cancer tissue microarrays to detect leptin, leptin receptor (Ob-R), adiponectin, and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). Wound healing assays and western blot analysis were then performed in human prostate cancer cell lines. RESULTS: Immunohistochemistry showed that prostate tissue was not significantly positive for adiponectin. However, its expression tended to decrease according to the International Society of Urological Pathology (ISUP) grade of prostate cancer (p=0.056). In prostate cancer cell lines, administration of the synthetic adiponectin AdipoRon suppressed cell migration as well as the expression of phospho-NF-[Formula: see text]B and cyclooxygenase-2, whereas leptin stimulated these effects. CONCLUSION: Adiponectin expression tended to be suppressed according to ISUP grade in prostate cancer tissues. In vitro, tumor cell migration was induced by leptin but suppressed by adiponectin. Targeting adipocytokines could be a novel treatment strategy for prostate cancer.


Assuntos
Leptina , Neoplasias da Próstata , Masculino , Humanos , Leptina/metabolismo , Adipocinas/metabolismo , Adiponectina/farmacologia , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Neoplasias da Próstata/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473909

RESUMO

Mutations of the FBN1 gene lead to Marfan syndrome (MFS), which is an autosomal dominant connective tissue disorder featured by thoracic aortic aneurysm risk. There is currently no effective treatment for MFS. Here, we studied the role of mitochondrial dysfunction in the phenotypic transformation of human smooth muscle cells (SMCs) and whether a mitochondrial boosting strategy can be a potential treatment. We knocked down FBN1 in SMCs to create an MFS cell model and used rotenone to induce mitochondrial dysfunction. Furthermore, we incubated the shFBN1 SMCs with Coenzyme Q10 (CoQ10) to assess whether restoring mitochondrial function can reverse the phenotypic transformation. The results showed that shFBN1 SMCs had decreased TFAM (mitochondrial transcription factor A), mtDNA levels and mitochondrial mass, lost their contractile capacity and had increased synthetic phenotype markers. Inhibiting the mitochondrial function of SMCs can decrease the expression of contractile markers and increase the expression of synthetic genes. Imposing mitochondrial stress causes a double-hit effect on the TFAM level, oxidative phosphorylation and phenotypic transformation of FBN1-knockdown SMCs while restoring mitochondrial metabolism with CoQ10 can rapidly reverse the synthetic phenotype. Our results suggest that mitochondria function is a potential therapeutic target for the phenotypic transformation of SMCs in MFS.


Assuntos
Síndrome de Marfan , Doenças Mitocondriais , Ubiquinona/análogos & derivados , Humanos , Síndrome de Marfan/genética , Fenótipo , Miócitos de Músculo Liso/metabolismo , Doenças Mitocondriais/metabolismo , Fibrilina-1/metabolismo , Adipocinas/metabolismo
6.
Front Endocrinol (Lausanne) ; 15: 1340625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532900

RESUMO

The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Adipocinas/metabolismo , Obesidade/metabolismo , Homeostase
7.
Biochem Pharmacol ; 222: 116104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428826

RESUMO

Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.


Assuntos
Adipocinas , Hepatopatia Gordurosa não Alcoólica , Humanos , Adipocinas/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adiponectina , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Psychoneuroendocrinology ; 164: 107026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507869

RESUMO

BACKGROUND: Adverse childhood experiences (ACE) elevate the risk of both major depressive disorder (MDD) and metabolic diseases. The underlying pathophysiology might include alterations of adipokine levels as a consequence of ACE. In this study, we used a full-factorial design to investigate the levels of select adipokines in women with ACE-only (n = 23), MDD-only (n = 27), ACE+MDD (n = 25) and healthy controls (HC, n = 29) to identify metabolic makers associated with vulnerability and resilience of developing MDD after ACE exposure. METHODS: Serum levels of adiponectin, leptin, adiponectin-to-leptin (A/L) ratio, and retinol binding protein 4 (RBP4) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: Adiponectin levels did not differ between groups. Individuals with vs. without MDD showed higher leptin serum concentrations. As predicted, A/L ratio indicated lower values in individuals with vs. without ACE. RBP4 showed a more nuanced pattern with reduced levels in the ACE-only and MDD-only groups compared to HC. Furthermore, the ACE-only group showed lower RBP4 concentrations compared to ACE+MDD. These results were not accounted by BMI or medication status. CONCLUSION: Our results do not support the utility of adiponectin and leptin as predictors of vulnerability or resilience of developing MDD after ACE. In contrast, RBP4 might play a role in resilience towards the development of MDD following ACE. Further research on this more recently discovered adipokine seems warranted.


Assuntos
Experiências Adversas da Infância , Transtorno Depressivo Maior , Humanos , Feminino , Adipocinas/metabolismo , Leptina , Adiponectina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol
9.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513348

RESUMO

In brief: Dairy cattle experience a period of infertility postpartum that is caused in part by the development of IGF1/insulin resistance. This study suggests that an adipokine, FNDC3A, reduces IGF1-dependent glycolysis and may contribute to postpartum infertility. Abstract: Dairy cows go through a period of subfertility after parturition, triggered in part by a disruption of energy homeostasis. The mobilization of body fat alters the secretion of adipokines, which have been shown to impact ovarian function. Fibronectin type III domain-containing 3A (FNDC3A) is a recently discovered adipokine-myokine, and FNDC3A mRNA abundance in subcutaneous adipose tissue is increased postpartum in cattle. In this study, we hypothesized that FNDC3A may compromise granulosa cell function in cattle and investigated this using a well-established in vitro cell culture model. Here, we demonstrate the presence of FNDC3A protein associated with extracellular vesicles in follicular fluid and in plasma, suggesting an endocrine role for this adipokine. FNDC3A protein and mRNA was also detected in the bovine ovary (cortex, granulosa and theca cells, cumulus, oocyte and corpus luteum). Abundance of FNDC3A mRNA in granulosa cells from small follicles was increased by in vitro treatment with the adipokines leptin and TNF but not by visfatin, resistin, adiponectin, chemerin or IGF1. Addition of recombinant FNDC3A at physiological doses (10 ng/mL) to granulosa cells decreased IGF1-dependent progesterone but not estradiol secretion and IGF1-dependent lactate secretion and abundance of GLUT3 and GLUT4 mRNA. This concentration of FNDC3A increased cell viability, abundance of mRNA encoding a putative receptor FOLR1, and increased phosphorylation of Akt. Collectively, these data suggest that FNDC3A may regulate folliculogenesis in cattle by modulating IGF1-dependent granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Infertilidade , Progesterona , Feminino , Bovinos , Animais , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Células da Granulosa/metabolismo , Adipocinas/metabolismo , Infertilidade/metabolismo , Lactatos/metabolismo
10.
Environ Sci Pollut Res Int ; 31(13): 19674-19686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363509

RESUMO

Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic ß-cell function index (HOMA-ß), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-ß in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus , Fibrilina-1 , Idoso , Humanos , Pessoa de Meia-Idade , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Glicemia/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Diabetes Mellitus/metabolismo , Exposição Ambiental/análise , Material Particulado/análise , Fibrilina-1/metabolismo , Adipocinas/metabolismo
11.
J Physiol ; 602(5): 773-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305477

RESUMO

Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways. Acylation-stimulating protein (ASP) is an adipokine that stimulates triglyceride synthesis and storage in adipose tissue by enhancing glucose and fatty acid uptake. ASP acts via its receptor C5L2. The primary objective of this review is to address the existing gap in the literature regarding ASP by investigating its diverse responses and receptor interactions across multiple determinants of obesity. These determinants include diet composition, metabolic disorders, organ involvement, sex and sex hormone levels. Furthermore, this article explores the broader paradigm shift from solely focusing on adipose tissue mass, which contributes to obesity, to considering the broader implications of adipose tissue function. Additionally, we raise a critical question concerning the clinical relevance of the insights gained from this review, both in terms of potential therapeutic interventions targeting ASP and in the context of preventing obesity-related conditions, highlighting the potential of the ASP-C5L2 interaction as a pharmacological target. In conclusion, these findings validate that obesity is a low-grade inflammatory status with multiorgan involvement and sex differences, demonstrating dynamic interactions between immune and metabolic response determinants.


Assuntos
Adipócitos , Tecido Adiposo , Complemento C3a , Feminino , Humanos , Masculino , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adipocinas/metabolismo
12.
Diabetes ; 73(2): 169-177, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241508

RESUMO

Excessive adiposity in obesity is a significant risk factor for development of type 2 diabetes (T2D), nonalcoholic fatty liver disease, and other cardiometabolic diseases. An unhealthy expansion of adipose tissue (AT) results in reduced adipogenesis, increased adipocyte hypertrophy, adipocyte hypoxia, chronic low-grade inflammation, increased macrophage infiltration, and insulin resistance. This ultimately culminates in AT dysfunction characterized by decreased secretion of antidiabetic adipokines such as adiponectin and adipsin and increased secretion of proinflammatory prodiabetic adipokines including RBP4 and resistin. This imbalance in adipokine secretion alters the physiological state of AT communication with target organs including pancreatic ß-cells, heart, and liver. In the pancreatic ß-cells, adipokines are known to have a direct effect on insulin secretion, gene expression, cell death, and/or dedifferentiation. For instance, impaired secretion of adipsin, which promotes insulin secretion and ß-cell identity, results in ß-cell failure and T2D, thus presenting a potential druggable target to improve and/or preserve ß-cell function. The cardiac tissue is affected by both the classic white AT-secreted adipokines and the newly recognized brown AT (BAT)-secreted BATokines or lipokines that alter lipid deposition and ventricular function. In the liver, adipokines affect hepatic gluconeogenesis, lipid accumulation, and insulin sensitivity, underscoring the importance of adipose-liver communication in the pathogenesis of nonalcoholic fatty liver disease. In this perspective, we outline what is currently known about the effects of individual adipokines on pancreatic ß-cells, liver, and the heart.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adiposidade , Fator D do Complemento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Inflamação/metabolismo , Lipídeos , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
13.
Obesity (Silver Spring) ; 32(3): 560-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38247441

RESUMO

OBJECTIVE: The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans. METHODS: Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 ± 2.3 y; 24.9 ± 5.1 kg/m2 ). BAT volume, 18 F-fluorodeoxyglucose uptake, and radiodensity were assessed by a static positron emission tomography-computerized tomography scan after cold exposure. RESULTS: Cold exposure increased the concentration of CXCL14 (Δ2h = 0.58 ± 0.98 ng/mL; p = 0.007), GDF15 (Δ2h = 19.63 ± 46.2 pg/mL; p = 0.013), FGF21 (Δ2h = 33.72 ± 55.13 pg/mL; p = 0.003), and IL6 (Δ1h = 1.98 ± 3.56 pg/mL; p = 0.048) and reduced BMP8b (Δ2h = -37.12 ± 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Δ2h: ß = 0.456; R2 = 0.307; p = 0.001), but not with 18 F-fluorodeoxyglucose uptake or radiodensity. None of the changes in the other studied brown adipokines was related to BAT volume, activity, or radiodensity. CONCLUSIONS: Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.


Assuntos
Adipocinas , Tecido Adiposo Marrom , Adulto Jovem , Humanos , Feminino , Masculino , Adipocinas/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fluordesoxiglucose F18/metabolismo , Temperatura Baixa
14.
J Cell Physiol ; 239(1): 67-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882238

RESUMO

Cerebral injury is closely associated with enhanced oxidative stress. A newly discovered secretory adipocytokine, intelectin-1 (ITLN-1), has been shown to have beneficial effects in neuroprotection in epidemiological studies. However, the specific molecular mechanism of ITLN-1 in protecting against cerebral oxidative stress needs further investigation. In this study, we hypothesize that ITLN-1 plays a protective role against oxidative stress injury through the SIRT1/PGC1-α signaling pathway in neuromatocytes. We used hydrogen peroxide (H2 O2 ) as a oxidative stress model to simulate oxidative stress injury. Then, small interfering RNAs (siRNAs) was used to knock down SIRT1 in N2a cells with or without ITLN overexpression, followed by H2 O2 -induced injury. We observed that H2 O2 injury significantly decreased the levels of ITLN-1, SIRT1, and PGC-1α. However, ITLN overexpression reversed H2 O2 -induced decline in cell viability and rise in apoptosis and intracellular ROS levels in N2a cells, while ITLN siRNA worsened the neurocyte injury. Furthermore, SIRT1 knockdown reversed the positive effect of ITLN overexpression on oxidative stress injury in N2a cells. Taken together, these findings suggest that ITLN-1 exerts neuroprotective effects against oxidative stress injury primarily through the SIRT1/PGC-1α axis.


Assuntos
Adipocinas , Neuroblastoma , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Apoptose , Neuroblastoma/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Adipocinas/genética , Adipocinas/metabolismo
15.
Biofactors ; 50(1): 135-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37584623

RESUMO

Human milk adipokines in term babies seem partially determined by maternal factors and affect infant's development. We aimed to describe bioactive peptide concentration in very preterm human milk and associations to maternal characteristics and postnatal growth. Mothers delivering ≤32 weeks of gestation and their infant/s were recruited. At 4 weeks of lactation, an aliquot of 24-h-pooled milk was collected for exclusively breastfeeding dyads. Insulin, leptin, adiponectin, and milk fat globule epidermal growth factor-8 (MFG-E8) were measured by enzyme-linked immunoabsorbent assay in skimmed milk. One hundred mothers (28.8 ± 2.3 weeks at delivery) provided a milk sample. Milk insulin was related to gestational age, pre-pregnancy body mass index (BMI), and galactagogue treatment (final model: adjusted R2 : 0.330, p < 0.0001; adjusted ß coefficients: galactagogue treatment: 0.348, p 0.001; pre-pregnancy BMI: 0.274, p 0.009; gestational age: -0.290, p 0.007). Adiponectin was higher in mothers with gestational diabetes (30.7 ± 6.5 vs. 24.8 ± 8 ng/mL, p 0.044). Leptin was associated with pre-pregnancy BMI (Spearman's ρ: 0.648, p < 0.0001) and MFG-E8 to presence of labor and multiple pregnancy (final linear regression model, R2 : 0.073, p 0.028, adjusted ß coefficients: presence of labor -0.229, p 0.050; twins: -0.192, p 0.099). Milk adiponectin was associated with a greater decrease in length z-scores from birth to 28 days (Pearson's r: -0.225, p 0.032) and to discharge (Pearson's r: -0.290, p 0.003). Milk MFG-E8 was lower in milk of mothers whose babies experienced late-onset sepsis (13.3 ± 5.8 vs. 16.8 ± 6.3 µg/mL, p 0.023). Adipokines levels in preterm human milk are partially related to maternal metabolic status. Milk peptide concentration associates with early neonatal growth trajectories.


Assuntos
Galactagogos , Leite Humano , Recém-Nascido , Feminino , Gravidez , Humanos , Lactente , Leite Humano/metabolismo , Leptina , Adiponectina/metabolismo , Insulina/metabolismo , Adipocinas/metabolismo
16.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 55-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37526207

RESUMO

A study was designed to evaluate the effect of Moringa oleifera, Phyllanthus amarus and Viscum album leaf meal as herbal inclusions to alleviate the detrimental outcomes of heat stress in weaned female rabbits. Forty (40) weaned rabbit does (527.99 ± 10.35 g; 28 days old) were randomly allotted to four dietary groups consisting of Diet 1(control diet; without leaf meal), Diets 2 (supplemented with 10% V. album); 3 (supplemented with 10% M. oleifera) and 4 (supplemented with 10% P. amarus) in an 84 days trial at the peak of heat stress in Southwest Nigeria. At the end of the trial, blood samples were collected to assess physiological responses and oxidative status of the rabbit does. The results obtained revealed that rabbit does were exposed to heat stress; rabbit does fed control diet had higher leucocyte and neutrophil/lymphocyte ratio compared to rabbit does fed on herbal inclusions. The herbal inclusions enhanced oxidative stability of rabbit does by lowering lipid peroxidation and enhancing antioxidant activities during heat stress conditions. Rabbit does fed control-based diet had significantly higher heat shock protein 70, leptin and adiponectin compared to rabbit does on M. oleifera, P. amarus and V. album supplemented diets. The herbal inclusions tend to suppress proinflammatory cytokines in rabbit does during heat stress condition. In conclusion, the herbal inclusions suppress inflammation, adipokines and promotes oxidative stability of rabbit does exposed to heat stress conditions.


Assuntos
Adipocinas , Hematologia , Coelhos , Feminino , Animais , Adipocinas/metabolismo , Adipocinas/farmacologia , Citocinas/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Resposta ao Choque Térmico
17.
Endocr Rev ; 45(2): 190-209, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37556371

RESUMO

Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Humanos , Gordura Subcutânea/metabolismo , Tecido Adiposo/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Adipocinas/metabolismo , Adipocinas/uso terapêutico , Doenças Cardiovasculares/metabolismo
18.
Vascul Pharmacol ; 154: 107270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114042

RESUMO

Adipsin is an adipokine predominantly synthesized in adipose tissues and released into circulation. It is also known as complement factor-D (CFD), acting as the rate-limiting factor in the alternative complement pathway and exerting essential functions on the activation of complement system. The deficiency of CFD in humans is a very rare condition. However, complement overactivation has been implicated in the etiology of numerous disorders, including cardiovascular disease (CVD). Increased circulating level of adipsin has been reported to promote vascular derangements, systemic inflammation, and endothelial dysfunction. Prospective and case-control studies showed that this adipokine is directly associated with all-cause death and rehospitalization in patients with coronary artery disease. Adipsin has also been implicated in pulmonary arterial hypertension, abdominal aortic aneurysm, pre-eclampsia, and type-2 diabetes which is a major risk factor for CVD. Importantly, serum adipsin has been recognized as a unique prognostic marker for assessing cardiovascular diseases. At present, there is paucity of experimental evidence about the precise role of adipsin in the etiology of CVD. However, this mini review provides some insight on the contribution of adipsin in the pathogenesis of CVD and highlights its role on endothelial, smooth muscle and immune cells that mediate cardiovascular functions.


Assuntos
Doenças Cardiovasculares , Fator D do Complemento , Feminino , Gravidez , Humanos , Fator D do Complemento/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Estudos Prospectivos , Tecido Adiposo/metabolismo , Adipocinas/metabolismo
19.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103643

RESUMO

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Assuntos
Adipocinas , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Macrófagos , Fosfoproteínas , Proteômica , Animais , Camundongos , Adipocinas/deficiência , Adipocinas/genética , Adipocinas/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Glicólise , Hipotermia/complicações , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ácido Láctico/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
20.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971748

RESUMO

In brief: Adipolin (C1QTNF12) has been described as a regulator of metabolism and is linked with the pathophysiology of PCOS. In this study, for the first time, we show the expression of C1QTNF12 in granulosa cells and its positive effect on porcine granulosa cell proliferation and steroid synthesis. Abstract: Adipolin (C1QTNF12) is a recently discovered adipokine that plays an important role in glucose and insulin level regulation. Previous studies showed its reduced level in serum of women suffering from polycystic ovarian syndrome; however, whether C1QTNF12 regulates ovary function is still unknown. The aim of the study was first to determine the level of C1QTNF12 in the porcine ovarian follicles granulosa cells (Gc) and then its in vitro effect on proliferation and steroidogenesis as well as phosphorylation of several signalling pathways. Our results showed that the expression of C1QTNF12 was dependent on follicle size and was higher at the mRNA and protein level in Gc of small than large follicles from both prepubertal and mature animals. Similar pattern was observed for C1QTNF12 concentration in porcine follicular fluid. Additionally, we observed immunolocalisation of C1QTNF12 in Gc, theca cells and oocytes. We found that C1QTNF12 stimulated porcine Gc proliferation via the activation of protein kinase B (AKT). Moreover, C1QTNF12 enhanced progesterone, testosterone and oestradiol secretion by elevating STAR, CYP11A1, HSD3B and CYP19A1 mRNA expression and by activation of MAP3/1 pathway. Additionally, C1QTNF12 increased pMAP3/1-to-MAP3/1 protein expression ratio and enhanced IGF1-induced pTyr-IGF1Rß-to-IGFR1ß and pMAP3/1-to-MAP3/1 protein ratios. Taken together, C1QTNF12 could act directly on proliferation and steroid synthesis and serve as an important factor in in vivo ovarian follicle function, possibly regulating the course of folliculogenesis.


Assuntos
Adipocinas , Síndrome do Ovário Policístico , Feminino , Animais , Suínos , Humanos , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo , Síndrome do Ovário Policístico/metabolismo , RNA Mensageiro/metabolismo , Reprodução , Estradiol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...